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SUMMARY 

The present study proposed a new hybrid model combining Autoregressive integrated moving average (ARIMA) and Wavelet 
Neural Network (WNN). ARIMA is the most widely used technique for forecasting in divergent domains for several decades. WNN 
is the recently developed neural networks which utilize wavelet activation function in the hidden neuron. As a case study, wheat 
yield of India has been considered to evaluate the forecasting performance of the proposed hybrid model. The proposed method was 
compared with ARIMA and existing hybrid ARIMA-ANN approach. Empirical results clearly reveal that the forecasting accuracy 
of the proposed method is better as compared to the existing approach. 
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1. INTRODUCTION 
Agriculture is one of the most prominent 

sectors in India as about 70% population of our 
country is directly dependent on agriculture and 
about 43% of India’s geographical area is used 
for agricultural activities. Since Green 
Revolution, India has been growing steadily in 
terms of agricultural1productivity and growth of 
food grain and commercial crops in India have 
risen considerably1over the last four decades. 
Modern farming1practices and inclusive 
technologies have been implemented in many 
parts of rural India to foster growth. The 
increased agricultural1production has been 
achieved largely throughan increase in the yield 
per hectare, rather than from an increased 
cultivated area. India is now in a position to 

export surplus agricultural commodities and 
earns a lot of foreign exchange. In such a 
scenario, forecasting of crop yields or any 
agricultural production is a formidable challenge. 

Auto-Regressive Integrated Moving Average 
(ARIMA) models (Box et al. 1994)  have been 
appreciated for crop yield or any other 
agricultural production forecasting. Sarika et al. 
(2011) employed, ARIMA model for modeling 
and forecasting India’s pigeon pea production 
data. Suresh et al. (2011) employed ARIMA 
model for forecasting sugarcane area, production 
and productivity of Tamilnadu state of India. 

Recent research activity shows that 
combining different model enhances the accuracy 
of forecasting as compared to individual model. 
Zhang (2003) hybrid methodology is one of the 



64 Mrinmoy Ray et al. / Journal of the Indian Society of Agricultural Statistics 70(1) 2016  63-70 
 
most popular hybrid method which combine 
ARIMA and ANN models. Koopman et al. 
(2007) proposed an approach which combines 
periodic ARFIMA and GARCH (Generalized 
Autoregressive Conditional Heteroskedasticity) 
model. Che and Wang (2010) proposed a hybrid 
model which combine ARIMA and SVM 
(Support Vector Machine). Jha and Sinha (2014) 
combine ARIMA and TDNN (Time Delay 
Neural Network) for forecasting monthly 
wholesale price of oilseed in India. Chaâbane 
(2014) proposed a hybrid model combing 
ARFIMA and Least square SVM. Paul (2015) 
forecasted volatile data combining ARIMAX, 
GARCH and wavelet approach. Paul et al. (2015) 
combine AR and FIGARCH (Fractionally 
integrated GARCH) and applied it for forecasting 
spot price of lentil. 

In this study a new hybrid model is proposed 
which combine Autoregressive integrated 
moving average (ARIMA) and Wavelet Neural 
Network (WNN). WNN is the recently developed 
neural network which utilizes wavelet activation 
function in the hidden neuron. A good account on 
Wavelet Neural Network (WNN) is given in 
Alexandridis and Zapranis (2013). 

2. MATERIAL AND METHODS 

2.1 Data Description 

Yearly data on wheat yield (1951-52 to 2013-
14) of all-India level was collected from 
Department of Agriculture and Cooperation 
(Agricultural Statistics at a Glance 2014) given in 
http:/agricoop.nic.in/agrilstatistics.htm.. Data 
from 1951-52 to 2003-04 were used for model 
construction and 2004-05 to 2013-14 were used 
to check the forecasting performance. 

2.2 Arima Model Fitting 
An ARIMA model is given by: 

( )(1 ) ( )d
t tB B y B      

where 
2

1 2( ) 1 p
pB B B B         

(Autoregressive parameter) 

2
1 2( ) 1 q

pB B B B         (Moving average 
parameter) 

 = white noise or error term 

D = differencing term 

B = Backshift operator i.e.  

ARIMA methodology is carried out in three 
stages, viz. Identification, estimation and 
diagnostic checking. Identification of d is 
necessary to make the non-stationary time series 
to stationary. A formal statistical test for the 
existence of stationarity, known as the test of the 
unit-root hypothesis or Augmented Dickey Fuller 
test was utilized to test the stationarity. A good 
account on Augmented Dickey Fuller test can be 
found in Makridakis et al. (1998). At the 
estimation stage, parameters are estimated for the 
ARIMA model tentatively chosen at the 
identification stage. Estimation of parameters for 
ARIMA model is generally done through 
iterative least squares method. The adequacy of 
the selected model is then tested at the diagnostic 
checking stage. At this stage, testing is done to 
see if the estimated model is statistically 
adequate i.e. whether the error terms are white 
noise which means error terms are uncorrelated 
with zero mean and constant variance. For this 
purpose, Ljung-Box test is applied to the original 
series or to the residuals after fitting a model. A 
good account on Ljung-Box test can be found in 
Box et al. (1994). If the model is found to be 
inadequate, the three stages are repeated until 
satisfactory ARIMA model is selected for the 
time-series under consideration. 

2.3 BDS (Brock-Dechert-Scheinkman) Test for 
Testing of Nonlinearity 
BDS test utilizes the concept of spatial 

correlation from chaos theory. The computational 
procedure is given as follows. 

1. Let the considered time series is 

  1 2 3[ , , ,..., ]i Nx x x x x  
2. The next step is to specify a value of m 

(embedding dimension), embed the time 

t

a
t t aB Y Y 
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series into m dimensional vectors, by 
taking each m successive points in the 
series. This transforms the series of 
scalars into a series of vectors with 
overlapping entries 

1 1 2

2 2 3 1

1

( , ,..., )

( , ,..., )
.
.
.

( , ,..., )

m
m

m
m

m
N m N m N m N

x x x x
x x x x

x x x x



   





  
3. In the third step correlation integral is 

computed, which measures the spatial 
correlation among the points, by adding 
the number of pairs of points ( i, j), where 
1≤ i ≤ N and 1≤ j≤ N, in the  
m-dimensional space which are “close” in 
the sense that the points are within a 
radius or tolerance  of each other. 

, , ;
1

( 1)m i j
i jm m

C I
N N 




 

 

where Ii,j; = 1 if 
m m
i jx x  

 
= 0 otherwise 

4. If the time series is i.i.d. then C,m [C,1]m 

5. The BDS test statistics is as follows 

[ ( ) ], ,
,

,

mN C Cm 1BDS m V m

 





  

where 
1

2 2 2 2 2 2
,

1

4[ 2 ( 1) ]
m

m m j j m m
m

j
V K K C m C m KC   


 



      

, , ;
6

( 1)( 2) i j N
i j Nm m m

K K h
N N N 

 

 
    

, ; , ; , ; , ; , ; , ;
, , ;

[ ]
3

i j j N i N N j j i i N
i j N

I I I I I I
h      



 
  

The choice of m and  depends on number of 
data. The null hypothesis is data are 
independently and identically distributed (i.i.d) 

against the alternative hypothesis the data are not 
i.i.d.; this implies that the time series is non-
linearly dependent. BDS test is a two-tailed test; 
the null hypothesis should be rejected if the BDS 
test statistic is greater than or less than the critical 
values. 

2.4 Artificial Neural Network (ANN) Model 
Artificial neural networks (ANNs) model are 

considered as a class of generalized nonlinear 
model that are able to capture various nonlinear 
structures present in the data set. The main 
advantage of this model is that it does not require 
prior assumption of the data generating process, 
instead it is largely depend on characteristics of 
the data popularly known as data-driven 
approach. Single hidden layer feed forward 
network is the most popular for time series 
modeling and forecasting. This model is 
characterized by a network of three layers of 
simple processing units, and thus termed as 
multilayer ANNs. The first layer is input layer, 
the middle layer is the hidden layer and the last 
layer is output layer.  

 
Fig. 1. Neural network architecture 

The relationship between the output (ݕ௧) and 
the inputs (yt-1, yt-2,…,yt-p) can be mathematically 
represented as follows: 

0 0

q p

t j i j t i
j i

y f g y  
 

  
   

  
    (1) 

where, ௝߱(݆ = 0,1,2, … . . ݅)and ߱௜௝ (ݍ, = 0,1,2, … … ,݌,
݆ = 0,1,2, … . . ,  are the model parameters often (ݍ
called the connection weights, p is the number of 
input nodes and q is the number of hidden nodes, 
g and f denote the activation function at hidden 
and output layer respectively. Activation function 
defines the relationship between inputs and 

 
 Output y(t) 
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outputs of a network in terms of degree of the 
non-linearity. Most commonly used activation 
functions are as follows: 

Activation Function Equation 
Identity x  
Sigmoid 1

1 xe
 

TanH 2
tanh( ) 121

x xe
 

 

ArcTan 1tan ( )x
 

Sinusoid sin( )x  
Gaussian 2xe  

For time series forecasting sigmoid activation 
function is employed in hidden layer and identity 
activation function is employed in the output 
layer (Banakar and Azeem 2008, Jha and Sinha 
2014, Zhang 2003). 

When radial basis functions are employed as 
activation function in the hidden neuron the 
neural network is known as Radial Basis 
Function (RBF) network. These activation 
functions can take many forms, but they are 
usually found as one of three functions 

RBF Activation Function Equation 
Gaussian 2

22
i iv c

e 

  
 
   

Multiquadratics 2 2
i iv c a   

Inverse Multiquadratics 

 
1

2 2 2
i iv c a


   

where ic  is the vector representing the function 
center a  and   are parameters affecting the 
spread of radius. 

When wavelets are employed as activation 
function in the hidden neurons it is known as the 
wavelet neural network. There are different types 
of wavelet activation functions. In this paper 
morlet wavelet (Banakar and Azeem 2008) was 
employed as activation function. Morlet function 
is represented as follows: 

2( )( ) cos(5 )xx e x    (2) 

This wavelet is derived from a function that is 
proportional to the cosine function and Gaussian 
probability density function. Research article 
Alexandridis and Zapranis (2013), Banakar and 
Azeem (2008) show that wavelet activation 
function is better than sigmoid function, hence in 
this article the comparison between sigmoid and 
wavelet activation function is done. 

Thus ANN model performs a nonlinear 
functional mapping between the input and output 
which characterized by a network of three layers 
of simple processing units connected by acyclic 
links. 

1 2( ,..., , )t t t t p ty f y y y w       (3) 

where, w is a vector of all parameters and f is a 
function of network structure and connection 
weights. Therefore, the neural network resembles 
a nonlinear autoregressive model. 

The selection of appropriate number of 
hidden nodes as well as optimum number of 
lagged observation p for input vector is important 
in ANN modeling for determination of the 
autocorrelation structure present in a time series. 
Though there are no established theories 
available for the selection of p and q, hence 
experiments are often conducted for the 
determination of the optimal values of p and q. 
For time series forecasting there are two common 
learning method one is levenberg-marquardt back 
propagation and the other is Gradient decent back 
propagation. Most of the literature (Alexandridis 
and Zaprani 2013, Banakar and Azeem 2008, 
Zang 2003) employed Gradient decent back 
propagation algorithm hence in this article 
gradient decent method was utilized. The 
objective of training is to minimize the error 
function that measures the misfit between the 
predicted value and the actual value. The error 
function which is widely used is mean squared 
error which can be written as: 

22

1 1 0 0

1 1( )
q pN N

i t j i j t i
n n j i

E e y f g y
N N

  
   

         
    

      (4) 
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where N is the total number of error terms. The 
parameters of the neural network are j  and i j  
estimated by iteration. Initial connection weights 
are taken randomly from uniform distribution. In 
each iteration the connection weights changed by 
an amount j   

( ) ( 1)j j
j

Et t   



     


  (5) 

where,   is the learning rate and 
j

E




 is the 

partial derivative of the function E with respect to 

the weight j .  is the momentum rate. The 
j

E




 

can be represented as follows 

( ) ( ) ( )j j
j

E e n f x y n
w
    


  (6) 

where ( )je n is the residual at nth iteration and
( )f x  is derivative of the activation function in 

the output layer. As in time series forecasting the 
activation function in the output layer is identity 
function hence ( )f x =1. ( )jy n is the desired 
output. Now connection weights in from input to 
hidden nodes changed by an amount ij  

( ) ( 1)ij i j
ij

Et t   



     


  (7) 

where  

0

( ) ( ) * ( )
q

j j
jij

E g x e n w n
w 

  
   (8) 

where ( )g x is the activation function in the 
hidden layer. For sigmoid activation function 

( )g x = 2

exp( )
(1 exp( ))

x
x


   

For morlet wavelet function 

( )g x  = 2 25sin(5 )exp( ) 2 cos(5 )exp( )x x x x x     

Learning rate is user defined parameter 
known as tuning parameter of neural network 
which determine how slow or fast the optimal 

weight is obtained. The learning rate must be set 
small enough to avoid divergence. The 
momentum term prevents the learning process 
from setting in a local minimum. Though there 
are no established theories available for the 
selection of learning rate and momentum, hence 
experiments are often conducted for the 
determination of the learning rate and 
momentum. Typically learning rate and 
momentum values lies between zero to one. After 
obtaining final weights by employing the 
equation 1 final output is obtained. 

2.5 Proposed Hybrid Approach 
The proposed approach considered time 

series ( ty ) as a function of linear and nonlinear 
components. Hence 

( , )t t ty f L N   (9) 

where tL  and tN  represents the linear and 
nonlinear component respectively. This approach 
follows the Zhang’s (2003) hybrid approach, 
accordingly the relationship between linear and 
nonlinear components can be written as 
following. 

t t ty L N    (10) 

The main strategy of this approach is to 
model the linear and nonlinear components 
separately by1different model. The methodology 
consists of three1steps. Firstly, an ARIMA model 
is employed to fit the linear component. Let the 
prediction series provided by ARIMA model 
denoted as ˆ

tL . In the second step, instead of 
predicting the linear component, the residuals 
denoted as te which are nonlinear in nature are 
predicted. The residuals can be obtained by 
subtracting the predicted value ˆ

tL  from actual 
value of the considered time series ty . 

ˆ
t t te y L   (11) 

Now the residuals are predicted employing a 
WNN model. Let the prediction series provided 
by WNN model denoted as ˆ

tN . Finally, the 
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predicted linear and nonlinear components are 
combined to generate aggregate prediction. 

ˆ ˆˆt t ty L N    (12) 

The proposed approach can be graphically 
represented as below. 

 
Fig. 2.  Overview of the forecasting framework 

2.6 Forecasting Performance 
Forecasting performance of the model has 

been judged by computing Mean Absolute 
Percent Error (MAPE) and Mean square Error 
(MSE). The model with less MAPE and MSE is 
preferred for forecasting purposes. The MAPE 
and MSE is computed as 

1

1 ˆ / 100
n

t t t
t

MAPE y y y
n 

    (13) 

 
2

1

1 ˆ
n

t t
t

MSE y y
n 

    (14) 

where n is the total number of forecast values. ty
is the actual value at period t and ˆty  is the 
corresponding forecast value. 

ARIMA model was fitted utilizing Statistical 
Analysis Systems (SAS), USA, Version 9.4, 
Module SAS-ETS. BDS test was employed using 
R software package tseries. A code has been 
developed for WNN [reader can email the first 
author for the code] in Matlab software. 

3. RESULTS AND DISCUSSION 
The time series plot reveals that there is a 

positive trend over time which indicates the time 
series non-stationary in nature. ADF test was 
applied for assessing non-stationary in time 

series. The results of the ADF test are given 
below in Table 1. The plot of time series is given 
below. 

 
Fig. 3. Wheat yield of all-india (1951-52 to 2013-14) 

Table 1. ADF test 

Series Single Mean With Trend 
ADF test 
Statistics 

Probability ADF test 
Statistics 

Probability 

Actual 
series 

0.19 0.9696 -3.00 0.14 

1st 
difference 
series 

-7.59 0.0001 -7.64 <.0001 

From Table 1 it can be infer that there exists 
non-stationary is the actual series but after first 
differencing the series become stationary. 
ARIMA (2, 1, 0) was found adequate for the 
considered time series which is given below. 

Table 2. Parameters of ARIMA (2,1,0) 

Parameter Estimate Std. Error t value Pr>|t| 
  39.25 7.83 5.02 0.0002 

1  -0.48 0.14 -3.53 0.004 

2  
-0.29 0.14 -2.03 0.0419 

1 139.25 0.48 0.29t t t ty y y         
where 1t t ty y y     

In the next step residuals are obtained from 
the fitted ARIMA model. The Brock, Dechert 
and Scheinkman (BDS) test Broock et al. (1996) 
was employed to test the existence of 
nonlinearity. The results of the test in given in 
Table 3 which indicate that nonlinear pattern 
exist in the residual data. 
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Table 3. BDS test 

Dimension (m) Epsilon (ℇ) Statistic Probability 
2 eps(1) 48.76 -5.26 <.0001 

eps(2) 97.51 -2.59 0.009687 
eps(3) 146.27 -3.51 0.0004406 
eps(4) 195.02 -6.34 <.0001 

3 eps(1) 48.76 -8.95 <.0001 
eps(2) 97.51 -2.83 0.00464 
eps(3) 146.27 -3.99 <.0001 
eps(4) 195.02 -6.71 <.0001 

Next the residual was fitted employing WNN 
as well as ANN model. The summary of the 
neural network model is given below in Table 4. 

Table 4. Neural network summary 

Parameters ANN WNN 
Number of input 
(lag) 

5 5 

Number of hidden 
unit 

3 3 

Activation function 
in hidden unit 

Sigmoid Morlet (wavelet) 

Number of 
iterations 

1500 1500 

Learning algorithm Gradient decent 
back propagation 

Gradient decent 
back propagation 

Learning rate 0.04 0.04 
Momentum 0.02 0.02 

To evaluate the forecasting performance last 
ten observations of the considered time series 
was predicted employing the proposed approach. 
This approach was compared with the 
conventional ARIMA as well as Zhang hybrid 
approach (ARIMA-ANN). The results are given 
Table 5. 

Table 5. Forecasted values from different model 

Year Actual ARIMA ARIMA 
-ANN 

Proposed 
Approach 

2004-05 2602 2776.30 2726.07 2683.80 
2005-06 2619 2785.71 2736.80 2700.04 
2006-07 2708 2832.45 2805.20 2753.53 
2007-08 2802 2876.63 2883.66 2871.35 
2008-09 2907 2911.36 2916.64 2928.65 
2009-10 2839 2951.38 2905.13 2870.12 
2010-11 2988 2991.55 2977.86 3065.83 
2011-12 3177 3030.14 3055.79 3122.50 
2012-13 3117 3069.44 3074.72 3153.72 
2013-14 3075 3108.86 3041.15 3094.58 
MAPE - 3.18 2.50 1.83 
MSE - 11686.41 6757.90 3233.70 

From Table 5 it can be infer that proposed 
approach perform better as compare to 
conventional ARIMA as well as Zhang hybrid 
approach (ARIMA-ANN) for the considered time 
series. 

4. CONCLUSION 

In this article a new hybrid approach is 
proposed which combine ARIMA and WNN. 
The difference between ANN and WNN is only 
the activation function in the hidden layer. For 
time series forecasting sigmoid activation 
function is employed in the hidden neuron. But in 
this study we employed morlet wavelet activation 
function in the hidden neuron. Wheat yield of 
India has been considered to evaluate the 
forecasting performance of the proposed hybrid 
model. Firstly ARIMA model was fitted for the 
considered time series. The residual obtained 
from fitted model was tested employing BDS test 
which reveals that nonlinearity pattern exists in 
the residual data. The performance of the 
proposed approach was compared with the 
conventional ARIMA model as well as the most 
popular Zhang hybrid approach (ARIMA-ANN). 
Based on the results obtained from this work it 
can be infer that proposed approach perform 
better as compare to conventional ARIMA as 
well as Zhang hybrid approach (ARIMA-ANN) 
for the considered time series. In further studies, 
one can improve the forecasting accuracy by 
applying some other hybrid models. This 
approach can be further evaluated by using some 
other data sets so that practical validity of the 
model can be well known. 
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